
COMP 40 Assignment: Locality and the costs of loads and stores

Overview and purpose

This assignment is all about the cache and locality. You’ll implement blocked two-dimensional arrays, which
you’ll then use to evaluate the performance of image rotation using three different array-access patterns with
different locality properties. You’ll also see how to write code that is polymorphic in an array type.

The assignment has two parallel tracks:

1. On the design and building track, you will implement blocked two-dimensional arrays and polymorphic

image rotation,

2. On the experimental computer-science track, you will predict the costs of image rotations, and later
measure them. Your predictions will be based on knowledge of the cache as covered in Chapter 6 of
Bryant and O’Halloran and as covered in class.

As described in Section 2, in this assignment we provide you with a lot of code and information. It will
take time to assimilate. You can get some of the code by running the commands

git clone /comp/40/git/locality

cd locality

which will create and enter a directory called locality. Do this at the start of the assignment.
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1 Problems

1.1 Part A (design/build): Improving locality through blocking

In this part of the assignment, you will implement a standard technique for improving locality: blocking.
The idea is best expressed in a picture. Here is a 10-by-10 array organized in 4-by-4 blocks:

The idea is simple: the blocked array has a similar interface to UArray2, but a different cost model. In par-
ticular,

• Cells in the same block are located near each other in memory.

• Mapping is done by blocks, not rows or columns. Mapping visits all cells in one block before
moving on to the next block.

• Some memory is wasted at the right and bottom edges: not all the cells in those blocks are used.
But if the array is large, then the wasted memory has size O(

√
n) and is unimportant. If the array is

small, it probably fits in the cache and you shouldn’t use blocking.

You have just one task for this part:

• Implement blocked arrays as described in the UArray2b interface below. Your solution must be
submitted in a source file named uarray2b.c.

Required interface

Since you have already been through a very similar design exercise, I will not ask you to repeat it. Instead,
I am specifying an interface, and I suggest a design which you may use if you wish. The interface you are to im-
plement, to be called UArray2b, appears in Figure 1. The blocksize parameter to UArray2b_new counts the
number of cells on one side of a block, so the actual number of cells in a block is blocksize * blocksize.
The number of bytes in a block is blocksize * blocksize * size. The blocksize parameter has no effect
on semantics, only on performance.

The UArray2b_new_64K_block allows you to default the blocksize; it is similar to UArray2_new. It chooses
a blocksize that is as large as possible while still allowing a block to fit in 64KB of RAM. If a single cell
will not fit in 64KB, the block size should be 1. The reasonably fast L2 caches on most modern machines
will hold between 128 KB and 256 KB of data, so if you create arrays using UArray2b_new_64K_block, you
can fit two blocks in cache at one time.
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#ifndef UARRAY2B_INCLUDED

#define UARRAY2B_INCLUDED

#define T UArray2b_T

typedef struct T *T;

/*

* new blocked 2d array

* blocksize = square root of # of cells in block.

* blocksize < 1 is a checked runtime error

*/

extern T UArray2b_new (int width, int height, int size, int blocksize);

/* new blocked 2d array: blocksize as large as possible provided

* block occupies at most 64KB (if possible)

*/

extern T UArray2b_new_64K_block(int width, int height, int size);

extern void UArray2b_free (T *array2b);

extern int UArray2b_width (T array2b);

extern int UArray2b_height (T array2b);

extern int UArray2b_size (T array2b);

extern int UArray2b_blocksize(T array2b);

/* return a pointer to the cell in the given column and row.

* index out of range is a checked run-time error

*/

extern void *UArray2b_at(T array2b, int column, int row);

/* visits every cell in one block before moving to another block */

extern void UArray2b_map(T array2b,

void apply(int col, int row, T array2b,

void *elem, void *cl),

void *cl);

/*

* it is a checked run-time error to pass a NULL T

* to any function in this interface

*/

#undef T

#endif

Figure 1: Interface for blocked arrays
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One possible architecture for your implementation

If you wish, you may use your own design and architecture for the implementation of UArray2b, or you may
use one of mine described as follows:

Here is a simple architecture for UArray2b. Because of the many layers of abstraction, it does
not perform very well, but it is relatively easy to implement.

• An UArray2b_T can be represented as an UArray2_T, each element of which contains one
block.

• A block should be represented as a single UArray_T. This representation guarantees that
cells in the same block are in nearby memory locations.

• To find the cell at index (i, j), first find the block at index (i / blocksize, j / blocksize).
Within that block, use the cell at index blocksize * (i % blocksize) + j % blocksize.

• Your mapping function should visit all the cells of one block before moving onto the cells of
the next. Blocks on the bottom and right edges may have unused cells, and your
mapping function must not visit these cells.

If you implement this design successfully, it is not too difficult to modify the code such that your blocked
array is stored in a single, contiguous area of memory. Once you have the address arithmetic right, you can
get a substantial speedup by avoiding all the memory references involved in going indirectly through the
UArray2 and Array abstractions. But the focus of this assignment is not primarily on performance. We
expect your program to run at reasonable speed, but you will do fine with the UArray2b design outlined
above (I.e. with the UArray2 T of Uarray ts). If you prefer, you can try a different approach.

Our solutions

Norman Ramsey wrote two solutions to this problem. The one that uses the design sketched above is about
175 lines of C, 50 of which appear at the end of this assignment. He then wrote another, faster solution
which is about 130 lines of C. The faster solution has a significantly more complicated invariant and was
correspondingly more difficult to get right.

typedef void *A2; /* unknown type that represents a
* 2D array of ’cells’
*/

typedef void A2Methods_Object; /* an unknown sequence of bytes in memory
* (element of an array)
*/

typedef void A2Methods_applyfun(int i, int j, A2 array2,
A2Methods_Object *ptr, void *cl);

typedef void A2Methods_mapfun(A2 array2, A2Methods_applyfun apply, void *cl);

typedef void A2Methods_smallapplyfun(A2Methods_Object *ptr, void *cl);
typedef void A2Methods_smallmapfun(A2 a2, A2Methods_smallapplyfun f, void *cl);

/* CONTINUED ON NEXT PAGE */

Figure 2: Polymorphic interface for manipulating two-dimensional arrays - Part 1 of 2

4



typedef struct A2Methods_T {
/* creates a distinct 2D array of memory cells, each of the given ’size’
* each cell is uninitialized
* if the array is blocked, uses a default block size
*/
A2(*new) (int width, int height, int size);

/* creates a distinct 2D array of memory cells, each of the given ’size’
* each cell is uninitialized
* if the array is blocked, the block size given is the number of cells
* along one side of a block; otherwise ’blocksize’ is ignored
*/
A2(*new_with_blocksize) (int width, int height, int size,

int blocksize);

/* frees *array2p and overwrites the pointer with NULL */
void (*free) (A2 * array2p);

/* observe properties of the array */
int (*width) (A2 array2);
int (*height) (A2 array2);
int (*size) (A2 array2);
int (*blocksize) (A2 array2); /* for an unblocked array, returns 1 */

/* returns a pointer to the object in column i, row j
* (checked runtime error if i or j is out of bounds)
*/
A2Methods_Object *(*at) (A2 array2, int i, int j);

/* mapping functions */
/* each mapping function visits every cell in array2, and for each
* cell it calls ’apply’ with these arguments:
* i, the column index of the cell
* j, the row index of the cell
* array2, the array passed to the mapping function
* cell, a pointer to the cell
* cl, the closure pointer passed to the mapping function
*
* These functions differ only in the *order* in which they visit cells:
* - row_major visits each row before the next, in order of increasing
* row index; within a row, column numbers increase
* - col_major visits each column before the next, in order of
* increasing column index; within a column, row numbers increase
* - block_major visits each block before the next; order of
* blocks and order of cells within a block is not specified
* - map_default uses a default order that has good locality
*
* In any record, map_block_major may be NULL provided that
* map_row_major and map_col_major are not NULL, and vice versa.
*/
void (*map_row_major) (A2 array2, A2Methods_applyfun apply, void *cl);
void (*map_col_major) (A2 array2, A2Methods_applyfun apply, void *cl);
void (*map_block_major)(A2 array2, A2Methods_applyfun apply, void *cl);
void (*map_default) (A2 array2, A2Methods_applyfun apply, void *cl);

/*
* alternative mapping functions that pass only
* cell pointer and closure
*/
void (*small_map_row_major) (A2 a2, A2Methods_smallapplyfun apply,

void *cl);
void (*small_map_col_major) (A2 a2, A2Methods_smallapplyfun apply,

void *cl);
void (*small_map_block_major)(A2 a2, A2Methods_smallapplyfun apply,

void *cl);
void (*small_map_default) (A2 a2, A2Methods_smallapplyfun apply,

void *cl);

} *A2Methods_T;

Figure 3: Polymorphic interface for manipulating two-dimensional arrays - Part 2 of 2
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1.2 Part B (design/build): supporting polymorphic manipulation of 2D arrays

You now have two different representations of two-dimensional arrays: UArray2, which supports column-
major and row-major mapping, and UArray2b, which supports block-major mapping. In order not to
duplicate code, we want to write image rotations that can operate on either kind of array. To achieve this
kind of reuse, we resort again to polymorphism: we define an interface A2Methods that can represent either
kind of two-dimensional array. You write one image-rotation program against this interface, and you can
use it with two implementations.

• Because I have specified the exact interface for UArray2b, I can provide an implementation of A2Methods
that uses UArray2b.

• Because you designed the UArray2 interface yourself, you will provide an implementation of A2Methods
that uses UArray2. My implementation is in file a2blocked.c; your implementation goes into

a2plain.c.

The A2Methods interface uses the same principles as the declaration of an abstract class in a language
like C++, C#, Java, or Smalltalk. Instead of calling functions by name, you will call through pointers to
functions. Those pointers live in a method suite of type A2Methods T, which is a pointer to a record of
function pointers (Figure 2). For each of these function pointers, you will need to create a static function
that calls into UArray2. To implement your method suite, you put pointers to those functions into a struct.
Looking at a2blocked.c will show you a complete example, and in Figure 4 we also provide a template for
your a2plain.c.

The interface you are to implement is defined in a2plain.h:

#include <a2methods.h>

extern A2Methods_T uarray2_methods_plain; /* functions for normal arrays */

You should write file a2plain.c, which implements this interface. It should look something like the
template in Figure 4. The only tricky bit is resolving differences in your apply functions. Let’s suppose that
your UArray2 apply and row-major map functions look like this:

typedef void UArray2_apply(int row, int col, void *elem, void *cl);

extern void UArray2_map_row_major(UArray2_T a2, UArray2_apply apply, void *cl);

This “inner” apply function is compatible with UArray2, but it might not be the same as the “outer” apply
function used in the A2Methods interface shown in Figure 2. (Whether it is or isn’t sufficiently compatible
you will have to determine. Even if it is, then when you implement the “small” functions below it surely
won’t be.) The exported mapping function will receive an “outer” apply function that is surely compatible
with the A2Methods interface, and if the two are not compatible already you will have to create an “inner”
apply function that is compatible with your own personal UArray2 interface.

1. To do this, you will likely need to define a new closure type a2fun closure, which holds the outer
apply function and its closure, plus any other information that’s expected by the outer apply function
but not provided by the inner apply function. In this case, the “other information” is the array.

2. Define a new, “inner” apply function that can be passed to your UArray2 map row major. This apply
function grabs information from the a2fun closure, and it applies the “outer” apply function. In other
words, it’s just a proxy.

3. Your A2Methods version of map row major, which you’ll export a pointer to, builds an a2fun closure,
and then calls UArray2 map row major using the new closure and the inner apply function. The new
closure always contains the old closure and the outer apply function.
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#include <stdlib.h>

#include <a2plain.h>

#include "uarray2.h"

/*********************************************/

/* Define a private version of each function */

/* in A2Methods_T that we implement */

/*********************************************/

static A2Methods_UArray2 new(int width, int height, int size)

{

return UArray2_new(...);

}

static A2Methods_UArray2 new_with_blocksize(int width, int height,

int size, int blocksize)

{

(void) blocksize;

return UArray2_new(...);

}

/* ... many more private (static) definitions follow ... */

/*

* now create the private struct containing pointers to the functions

*/

static struct A2Methods_T uarray2_methods_plain_struct = {

new,

new_with_blocksize,

/* ... other functions follow in order,

with NULL for those not implemented ...

*/

};

/*

* finally the payoff: here is the exported pointer to the struct

*/

A2Methods_T uarray2_methods_plain = &uarray2_methods_plain_struct;

Figure 4: Boilerplate for implementing a struct pointer of type A2Methods T
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typedef void UArray2_apply(int row, int col, void *elem, void *cl);

extern void UArray2_map_row_major(UArray2_T a2, UArray2_apply apply, void *cl);

struct a2fun_closure {

A2Methods_applyfun *apply; /* apply function as known to A2Methods */

void *cl; /* closure to go with apply function */

A2Methods_UArray2 array2; /* array being mapped over */

};

static void apply_a2methods_using_array2_prototype(int row, int col,

void *elem, void *cl)

{

struct a2fun_closure *f = cl; /* function/closure originally passed */

f->apply(col, row, f->array2, elem, f->cl);

}

static void map_row_major(A2Methods_UArray2 array2, A2Methods_applyfun apply,

void *cl)

{

struct a2fun_closure mycl = { apply, cl, array2 };

UArray2_map_row_major(array2, apply_a2methods_using_array2_prototype,

&mycl);

}

Figure 5: Mediating between map/apply functions that use different prototypes

You can see a full example in Figure 5.
Here is a summary of your obligations for this part:

• You submit a file a2plain.c which exports the single pointer uarray2_methods_plain.

• In the methods suite, you must implement all the methods from new through at.

• Of the mapping methods, you must implement small_map_row_major, small_map_col_major, and
small_map_default. For small_map_default, you should use either a row-major or a column-major
mapping, whichever you think has better locality.

• If you can, you should implement methods map_row_major, map_col_major, and map_default. For
map_default, you should use either a row-major or a column-major mapping, whichever you think has
better locality.

• Because UArray2 does not support blocking, youmust not implement map_block_major or small_map_block_major.
These pointers must be NULL.
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1.3 Part C (design/build): ppmtrans, a program with straightforward locality
properties

Using the A2Methods abstraction, implement program ppmtrans, which is modelled on jpegtran and per-
forms some simple image transformations. Program ppmtrans offers a subset of jpegtran’s functionality.
The image-transformation options you may support are as follows:

-rotate 90

Rotate image 90 degrees clockwise.

-rotate 180

Rotate image 180 degrees.

-rotate 270

Rotate image 270 degrees clockwise (or 90 ccw).

-rotate 0

Leave the image unchanged.

-flip horizontal

Mirror image horizontally (left-right).

-flip vertical

Mirror image vertically (top-bottom).

-transpose

Transpose image (across UL-to-LR axis).

-time <timing_file>

Create timing data (see Section 1.5 below) and store

the data in the file named <timing_file>.

You must implement 0-degree, 90-degree and 180-degree rotations and the -time option. Other
options may be implemented for extra credit; if you choose not to implement them, reject the unim-
plemented options with a suitable error message written to stderr and a nonzero exit code. As usual,
successful execution of an implemented option should result in an exit code of EXIT SUCCESS, which is
0. If ppmtrans is run with no options, it defaults to a 0-degree rotation. If a filename is supplied and
that filename cannot be opened for reading, the result must be an explanatory message on stderr and an
exit with code EXIT FAILURE. No output may be written to stdout or stderr except where instructions
elsewhere in this specification specifically allow for or require it.

Significant requirements:

• Your program must also recognize and implement these options:

-row-major

Copy pixels from the source image using map_row_major

-col-major

Copy pixels from the source image using map_col_major

-block-major

Copy pixels from the source image using map_block_major

If none of these options is provided, follow the example of the argument handling code below, which
uses methods->map_default.
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• You must not call UArray2 functions or UArray2b functions directly. Instead you must call
indirectly through the function pointers in a methods suite.

• You must use the mapping functions defined in a2methods.h to perform the transform, not
nested for loops. (Reading the PPM file is always done in row-major order, because that’s how the
pixels are stored in the file.)

• For row-major and column-major mapping, you will use the methods suite uarray2 methods plain

that you will have created in Part B of this homework. For block-major mapping, you will use the
methods suite uarray2 methods blocked that we provide in interface a2blocked.h.

Your ppmtrans should read a single ppm image either from standard input or from a file named on the
command line.

Your ppmtrans should write the transformed image to standard output. Note that your image will be
written in the binary (not plain) ppm format, and that we give you code (described below) that will do this
correctly. Specifically, you must use the services defined in pnm.h to read, write and free the image files.
Also, you do not need to do any explicit error handling relating to incorrect image file formats: you may rely
on the services defined in pnm.h, and you should not be catching the exceptions it raises. For help handling
command-line options, see the suggested code at the end of this assignment.

Why this problem is interesting from a cache point of view:

If cells in a row are stored in adjacent memory locations, processing cells in a row has good spatial

locality, but it’s not clear about processing cells in a column. If cells in a column are stored in

adjacent memory locations, processing cells in a column has good spatial locality, but it’s not clear

about processing cells in a row. In a 90-degree rotation, processing a row in the source image

means processing a column in the destination image, and vice versa. Thus, the locality properties

of 90-degree rotation are not immediately obvious.

In a 180-degree rotation, rows map to rows and columns map to columns. Thus, whatever locality

properties are enjoyed by the source-image processing are enjoyed equally by the destination-image

processing. If you understand how your data structure works, then, you should find it easier to

predict the locality of 180-degree rotation.

In a blocked representation, the mapping of blocks to blocks is not obvious. To understand the

locality properties of blocked array processing, you will have to think carefully.

My solution to this problem is about 150 lines of code.

1.4 Part D (experimental): Analyze locality and predict performance

This part of the assignment is to be completed at the same time as your design work for parts A and C.
Please estimate the expected cache hit rate for reads of each of the six operations in the table below.
Assume that the images being rotated are much too large to fit in the cache.

row-major access (UArray2) column-major access(UArray2) blocked access (UArray2b)

90-degree rotation

180-degree rotation

The first two columns should be your estimate of how your UArray2 implementation would perform with
row-major and column-major access respectively. The third column should be for block-major access, which
obviously is for your UArray2B implementation.

Each estimate should be a rank between 1 and 6, with 1 being the best hit rate and 6 being the
worst hit rate. If you think two operations will have about the same hit rate, give them the same rank. For
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example, if you think that both column-major rotations will have the most cache misses and will have about
the same number of cache misses, rank them both 5 and rank the other entries 1 to 4.

Justify your estimates on the grounds of expected cache misses and locality. Your justifications

will form a significant fraction of your grade for this part.

Unfortunately, measuring (versus estimating) hit rates is not so easy. In industry, they would measure
performance against simulators (valgrind has cache simulation tools, for example) and then collect data
from the actual hardware. We will not do that here, but you will measure your program’s performance in
Part E below.

To complete this problem successfully, you will need to understand the material presented in class and
in Chapter 6 of Bryant and O’Hallaron.

1.5 Part E (experimental): Measure and explain improvements in locality

To help understand the performance of your program, you have implemented the optional -time <filename>

command line argument. If this argument is given, then your program will produce timing data that can
later be analyzed.

• Carefully follow the instructions at http://www.cs.tufts.edu/comp/40/homework/locality-timing

to learn about and integrate our timing library into your ppmtrans.c

• You will find a very small supply of large images in /comp/40/images/large.

• You can create your own large image by using any JPEG file with djpeg and pnmscale. Experiment
until you get something of reasonable size, I.e. one that takes enough CPU time to show interesting
results, and is not too big to be practical. A few seconds of CPU time is ideal.

Example command lines:

djpeg /comp/40/images/from-wind-cave.jpg | pnmscale 3.5 |

./ppmtrans -rotate 90 | display -

djpeg /comp/40/images/wind-cave.jpg | pnmscale 1.2 |

./ppmtrans -rotate 90 | display -

• If you need to store a large image, you can create files and directories in the /data area, and they will
not count against your disk quota. You can also request that your disk quota be enlarged to 2GB;
fill out the form at

https://www.eecs.tufts.edu/userguide/forms/quota.php

and list me as faculty sponsor. Please don’t do this unless you really need it, as it’s some work for the
support staff. Note that /data directories tend to be private per machine, so if you switch machines
you might not find information you left in the /data directory of another.

• Remember, the instructions at http://www.cs.tufts.edu/comp/40/homework/locality-timing

have told you how to instrument ppmtrans.c so that it appends accurate timing informa-

tion to a named timing file. Be sure that you write your timing information to the file

named with the -timing command line switch.

Choose an image at a given scale and be sure to time all rotations on that image at the same scale. If you
like, you can also do the same for other images of several different sizes: small ones may fit in caches and
larger ones might not.

Note that our timing library records CPU time, which is the time the computer spends actually running
your program. The time reported should, for the most part, be independent of whether anyone else is using
the machine at the same time. Do make sure to do all your reported tests on the same machine, and indicate
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in your report which machine it is. Some computers are faster than others, of course, and those will report
lower CPU times for a given input.

Always record not only the total time taken for each rotation, but also compute the time

per input pixel. Since the number of total input pixels is width * height of your input image it should
be trivial to have your ppmtrans output the number of pixels and time per pixel along with the total time.
DO NOT SEPARATELY START AND STOP THE TIMER FOR EACH PIXEL! Just measure the time
for the whole transformation, and then divide by total pixels to compute the average time per pixel.

There’s an interesting lesson here: there is a little unavoidable fixed overhead in starting and stopping
the timers. If you try to time the very small amount of work for moving one pixel, that overhead becomes
relatively significant. If you time the work to transform the entire image, and then divide to get the average
time per pixel, then the overhead of starting and stopping is amortized over the much longer computation
being measured.

Why bother to compute the time per pixel at all? Why not just report the total for the whole image?
The latter will obviously vary a lot between small and large images, but the average time to move a pixel
can be directly compared. Think a bit: do you expect the time per pixel to be the same for small and large
images?

2 Infrastructure that we provide

This section identifies infrastructure you can use for this assignment.

2.1 A polymorphic interface to two-dimensional arrays

1. Figure 2 on page 4 gives a polymorphic interface that describes a method suite for two-dimensional
arrays. You will provide a method suite that works with your design and implementation of UArray2;
we provide an implementation that works with UArray2b. For a rather simple example of how to use
the 2D-array methods, see sample file a2test.c (item 5 below). The file a2methods.h appears in
/comp/40/include and should not be copied.

2.2 Other interfaces we have designed for you

The interfaces below appear in /comp/40/include. Do not copy these files. You should be able to
compile against any of these interfaces by using the option -I/comp/40/include with gcc.

2. Files a2plain.h and a2blocked.h define two interfaces that promise method suites. We implement
a2blocked.h; you should be able to link against our implementation using the options -L/comp/40/lib64 -l40locality

with gcc.

3. File uarray2b.h defines the UArray2b interface. (You write the implementation.)

4. File pnm.h defines functions you can use to read, write, and free portable pixmap (PPM) files (see
/comp/40/include/pnm.h for the interface). It defines a representation for colored pixels. The pixmap
itself is represented as type void *; you will use this code with the A2Methods_T methods.

The Pnm interface uses the A2Methods interface.

You should be able to link against our implementation of pnm.h by using the options

-L/comp/40/lib64 -l40locality -lnetpbm

with gcc. (Pnm_ppmread, etc., have implementations in the 40locality library we provide. These
implementations in turn require things in the netpbm library.)
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2.3 Test code for two-dimensional arrays

5. As usual when implementing polymorphism in C, it is possible to make a mistake with void * pointers.
You will therefore want to run small test cases using valgrind in order to flush out potential
memory errors. We provide one sample test case in file a2test.c; it tests the cell and at methods as
well as row-major mapping, if present. Before you can use it you will need to implement uarray2b.c
or a2plain.c or both.

Once you can build a2test, run valgrind ./a2test.

2.4 Other source code

6. We provide C source code for a2blocked.c, which you don’t need to compile, but you might find useful
to study. We also provide incomplete versions of a2plain.c and ppmtrans.c.

2.5 Where to get what

7. All of the C source we provide for you is in a git repository. That repository also contains a Makefile

that builds a2test; you will need to extend the script to build ppmtrans.

You get all these sources by

git clone /comp/40/git/locality

which will create a subdirectory locality. We recommend you begin the assignment by cre-

ating a directory using git clone.

8. Interfaces uarray2b.h, a2methods.h, a2blocked.h, and a2plain.h all appear in /comp/40/include.
Don’t copy these interfaces.

2.6 Geometric calculations we have done for you

What’s important about this assignment is how locality stores affects performance, not how to rotate images.
We therefore inform you that we believe

9. If you have an original image of size w × h, then when the image is rotated 90 degrees, pixel (i, j) in
the original becomes pixel (h− j − 1, i) in the rotated image.

10. When the image is rotated 180 degrees, pixel (i, j) becomes pixel (w − i− 1, h− j − 1).

3 What we expect from your preliminary submission

Your preliminary submission should include your design work for parts A and C as well as all of part D.

• For Part C, please use the design checklist for writing programs. We are especially interested in know-
ing what additional components you plan to use to implement ppmtrans and how those compo-

nents work together to solve the problem. We expect you to describe a modular architecture

and to exploit procedural abstraction.

• For Part A, please use the design checklist for abstract data types. If we ignore costs, then in the world
of ideas, UArray2b cannot be distinguished from UArray2. So all of your test cases and examples
carry over from the previous assignment. Repeat them with updates and improvements as necessary
(incorporate any feedback you received from the previous assignment). We will have higher standards
this time around.

We expect you to pay special attention to the representation and its invariants. Please be sure
your submission explains
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1. How you will translate cell coordinates (i, j) into a C pointer in your representation. (If you use
my design, your explanation will probably involve block coordinates—or a block number—and
the index of the cell within the block.) The best possible explanation is a precise one using a set

of equations.

2. How you will translate a location within your representation (which in my design would be
the combination of block coordinates and the index of a cell within the block) back to pixel
coordinates (i, j). The best possible explanation is a precise one using a set of equations.

3. What representation you will use for a single block.

4. What representation you will use for a 2-dimensional array of blocks.

Please submit two files:

• DESIGN or design.pdf for your design work for Parts A and C.

• ESTIMATES or estimates.pdf for your estimates of locality, work per pixel, and total cost

Submit using submit40-locality-design.

4 What we expect from your final submission

Your implementation, to be submitted using submit40-locality, should include

1. A README file which

• Identifies you and your programming partner by name

• Acknowledges help you may have received from or collaborative work you may have undertaken

• Identifies what has been correctly implemented and what has not

• Documents the architecture of your solutions.

• Give measured performance for Part E and explain your results. Be sure to record in a table
the following:

– The sizes of the images used for each of your tests

– The total CPU time and the time per input pixel for each rotation on each image you report.
Making the simplifying assumption that our computers execute approximately 1,000,000,000
instructions per second, estimate for each rotation the number of instructions executed per
input pixel rotated.

– The name and model of the computer you ran your tests on as well as the CPU type and
clock rate. (more /proc/cpuinfo)

Below your table, discuss patterns you see in the results: for example, do certain rotations run
faster when using blocked arrays vs. plain? If you try different sized images (not required but
useful), is the number of instructions per pixel similar regardless of image size? If not, why not?

• Says approximately how many hours you have spent completing the assignment

2. (Optional) If you happen to know how to use a spreadsheet or GNUPlot to create bar charts, you’re
welcome to include a few PDFs with charts of the interesting data from your tables. This is NOT
required, but it might help you tell your story.

3. The file ppmtrans.c.

4. File uarray2b.c, which implements the UArray2b interface. This file should include internal docu-
mentation explaining your representation and its invariants.

14

submit40-locality


5. File a2plain.c, which provides a method suite as described by the a2methods.h interface.

6. Any other files you may have created as useful components.

7. A Makefile, which, when run using

make

encounters no errors and builds three executable binaries: a2test, timing test and ppmtrans.

• ppmtrans should be linked with ppmtrans.o, uarray2.o, uarray2b.o, a2plain.o, a2blocked.o,
and probably with other relocatable object files and libraries.

5 Avoid common mistakes

Here are the mistakes most commonly made on this project:

• It’s a mistake to submit, in place of an invariant, a narrative description of a sequence of events.

• It’s a mistake to try to explain a complex invariant in informal English.

• It’s a mistake to analyze a rotation experiment if the rotation completes in less than a second or so.

• When two programs perform very differently, and the programs have very different loop structures, it’s
a mistake to try to explain performance differences by appealing to locality.

15



6 Code to handle command-line options and choose methods

To deal with command-line options in ppmtrans.c, consider the code below. This code does not help you
decide if a file has been named on the command line, which determines whether you read from that file or
from standard input. To make this decision, you will need to examine the values of i and argc.

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "assert.h"

#include "a2methods.h"

#include "a2plain.h"

#include "a2blocked.h"

#include "pnm.h"

static void

usage(const char *progname)

{

fprintf(stderr, "Usage: %s [-rotate <angle>] "

"[-{row,col,block}-major] [filename]\n",

progname);

exit(1);

}

int main(int argc, char *argv[])

{

char *time_file_name = NULL;

int rotation = 0;

int i;

/* default to UArray2 methods */

A2Methods_T methods = uarray2_methods_plain;

assert(methods);

/* default to best map */

A2Methods_mapfun *map = methods->map_default;

assert(map);

#define SET_METHODS(METHODS, MAP, WHAT) do { \

methods = (METHODS); \

assert(methods != NULL); \

map = methods->MAP; \

if (map == NULL) { \

fprintf(stderr, "%s does not support " \

WHAT "mapping\n", \

argv[0]); \

exit(1); \

} \

} while (0)

for (i = 1; i < argc; i++) {

if (strcmp(argv[i], "-row-major") == 0) {

SET_METHODS(uarray2_methods_plain, map_row_major,

"row-major");

} else if (strcmp(argv[i], "-col-major") == 0) {

SET_METHODS(uarray2_methods_plain, map_col_major,

"column-major");

} else if (strcmp(argv[i], "-block-major") == 0) {

SET_METHODS(uarray2_methods_blocked, map_block_major,

"block-major");

} else if (strcmp(argv[i], "-rotate") == 0) {
16



if (!(i + 1 < argc)) { /* no rotate value */

usage(argv[0]);

}

char *endptr;

rotation = strtol(argv[++i], &endptr, 10);

if (!(rotation == 0 || rotation == 90

|| rotation == 180 || rotation == 270)) {

fprintf(stderr, "Rotation must be "

"0, 90 180 or 270\n");

usage(argv[0]);

}

if (!(*endptr == ’\0’)) { /* Not a number */

usage(argv[0]);

}

} else if (strcmp(argv[i], "-time") == 0) {

time_file_name = argv[++i];

} else if (*argv[i] == ’-’) {

fprintf(stderr, "%s: unknown option ’%s’\n", argv[0],

argv[i]);

} else if (argc - i > 1) {

fprintf(stderr, "Too many arguments\n");

usage(argv[0]);

} else {

break;

}

}

...

}
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